EASIUR Tutorial v0.3

Jinhyok Heo

May, 2015

CEDM/CAPS/EPP at Carnegie Mellon

The Social Cost of Air Quality

EASIUR Model

(Estimating Air pollution Social Impact Using Regression)

- EAISUR estimates marginal damages [\$/t] of emissions in the United States
- Species: currently four species
 - EC: direct or "primary" PM_{2.5}
 - \square SO₂, NO_x, and NH₃: precursors to "secondary" PM_{2.5}
 - □ Volatile organic compounds (VOCs): important missing species
- Time resolution: four seasons
- Spatial resolution: 148×112 grid (one cell = $36 \text{ km} \times 36 \text{ km}$)
- Three stack heights: Ground-level area emissions, Point emissions at 150 m, and Point emissions at 300 m
- Where to get? http://barney.ce.cmu.edu/~jinhyok/easiur/>

How to use EASIUR

- User interface: spatial lookup tables
 - CSV (Comma-separated value) file
 - Shapefile for GIS software
 - Other format? (Need county-based?)
- A 148×112 array per species per season (16 arrays in total)

How to use EASIUR

- CSV (Comma-separated value) file
 - Filename format: (species)_(season)_(height).csv
 - species: PEC (Primary PM_{2.5}), SO2 (Sulfur dioxide), NOX (Nitrogen oxides), NH3 (Ammonia)
 - season: Winter (Jan-Mar), Spring (Apr-Jun), Summer (Jul-Sep), Fall (Oct-Dec), Annual (Average of four seasons)
 - height: area (ground-level), point150 (150 m stack height), point300
 (300 m stack height)
 - Unit: USD per metric ton (\$/t)

How to use EASIUR

- Shapefile for GIS software
 - Look at Attribute table.
 - Field name format: (species)(season)(height)
 - species: PEC: Primary PM_{2.5}, SO2: Sulfur dioxide, NOX: Nitrogen oxides, NH3: Ammonia
 - season: Wi (Jan-Mar), Spr (Apr-Jun), Su (Jul-Sep), Fa (Oct-Dec), An (Average of four seasons)
 - height: A (ground-level), M (150 m stack height), H (300 m stack height)
 - (Field names are shortened because shapefile allows only up to 10 characters for field name.)

Caveats:

- □ EASIUR grid index starts with (1, 1), not (0, 0).
- EASIUR uses metric ton, not short ton.

Example: 3 tonne of SO₂ emitted in Pittsburgh in Winter?

- Convert Pittsburgh (Lat, Lon) to EASIUR grid coordinate (x, y)
 - \Rightarrow (-80.00°, 40.44°) = (116.62, 63.49) \simeq (117, 63)
 - \Rightarrow A bit complicated, see the next slide.
- Find (117, 63) in Winter SO_2 array (EASIUR $_{SO_2}^{Winter}$)
 - \Rightarrow EASIUR_{SO₂} [117, 63] = \$240,000 /t SO₂
- Multiply 3 t SO₂
 - \Rightarrow Social Cost = \$240,000 /t SO₂ ×3 t SO₂ = \$720,000

Example: 3 tonne of SO₂ emitted in Pittsburgh in Winter?

- Convert Pittsburgh (Lat, Lon) to EASIUR grid coordinate (x, y)
 - \Rightarrow (-80.00°, 40.44°) = (116.62, 63.49) \simeq (117, 63)
 - \Rightarrow A bit complicated, see the next slide.
- Find (117, 63) in Winter SO₂ array (EASIUR_{SO₂})
 - \Rightarrow EASIUR^{Winter}_{SO₂} [117, 63] = \$240,000/t SO₂
- Multiply 3 t SO₂
 - \Rightarrow Social Cost = \$240,000 /t SO₂ \times 3 t SO₂ = \$720,000

Example: 3 tonne of SO₂ emitted in Pittsburgh in Winter?

- Convert Pittsburgh (Lat, Lon) to EASIUR grid coordinate (x, y)
 - \Rightarrow (-80.00°, 40.44°) = (116.62, 63.49) \simeq (117, 63)
 - \Rightarrow A bit complicated, see the next slide.
- Find (117, 63) in Winter SO₂ array (EASIUR_{SO₂})
 - \Rightarrow EASIUR $_{SO_2}^{Winter}$ [117, 63] = \$240,000/t SO_2
- Multiply 3 t SO₂
 - \Rightarrow Social Cost = \$240,000 /t SO₂ \times 3 t SO₂ = \$720,000

Converting (latitude, longitude) to EASIUR grid

EASIUR website provides conversion tools:

⇒ <http://barney.ce.cmu.edu/~jinhyok/easiur/>

Three major sources of uncertainties

- Air quality simulation:
 - □ EASIUR provides 95% prediction intervals (about a factor of two or three)
- Concentration-Response relation
- Value of a Statistical Life

Uncertainty: Concentration-Response relation (1)

- Epidemiological studies on PM_{2.5} mortality provide 95% confidence intervals of relative risk ($RR \equiv \frac{\text{increased mortality rate}}{10 \, \mu \text{g PM}_{2.5}/\text{m}^3}$)
 - □ Log-linear relation: Mortality $\propto \ln(RR)$
- Two landmark cohort studies:
 - □ American Cancer Society study (Krewski et al, 2009):
 - \Rightarrow Bigger sample (or cohort), not random
 - \Rightarrow RR = 1.06 (1.04-1.08)
 - □ Harvard Six Cities study (Lepeule et al, 2012):
 - \Rightarrow Smaller sample in eastern U.S., but random
 - \Rightarrow RR = 1.14 (1.07-1.22)

Uncertainty: Concentration-Response relation (2)

- EASIUR default relative risk: 1.06
 - □ Adjustment factor (F_{RR}) for other RR:

$$F_{RR} = -15.1 + 15.2 \cdot RR \tag{1}$$

- e.g. for RR = 1.08, $F_{RR} = -15.1 + 15.2 \times 1.08 = 1.3$. Multiply 1.3 to default EASIUR estimate.
- Uncertainty analysis
 - Simple: Use Eq. 1 to calculate 95% confidence interval.
 - Monte Carlo: Look at Appendix C: Deriving Health Impact Functions in BenMAP User's Manual.

Uncertainty: Value of a Statistical Life (1)

- U.S. EPA's official VSL: \$4.8M in 1990 USD and 1990 income level
 (= \$6.3M in 2000 USD = \$8.0M in 2010 USD)
- a mean of a Weibull distribution (scale=5.32, shape=1.51) based on 26 value-of-life studies

Uncertainty: Value of a Statistical Life (2)

- EASIUR's default VSL: \$8.8M in 2010 USD and 2010 income
- need to adjust for dollar year and for income growth.
 - □ A table of U.S. EPA's adjustment factors is provided.
- Uncertainty analysis
 - □ Simple: Use 95% confidence interval of the Weibull distribution
 - \Rightarrow [\$0.46M, \$13M] in 1990 USD
 - \Rightarrow Adjust for your dollar year and income year
 - Monte Carlo: Use the Weibull distribution directly.

Thanks! Any question?

Contact: easiur@barney.ce.cmu.edu
Jinhyok Heo and Peter J. Adams